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Abstract- This paper describes the implementation of two sen-

sor data processing tasks on the Reconfigurable Data Path Proc-
essor (RDPP). These tasks are focal plane array readout correc-
tion, and Fourier transform hyperspectral imager data conver-
sions. These tasks illustrate reconfigurability, dynamic data path 
switching, and data path parallelism. The two challenge prob-
lems were demonstrated on an RDPP simulator, helping to vali-
date the RDPP architecture. 

I. INTRODUCTION 

 
The Reconfigurable Data Path Processor (RDPP) is a new 

on-board data processing architecture for spacecraft instru-
ment data processing, developed under ESTO sponsorship. 
The RDPP is run-time reconfigurable, that is, its internal ar-
chitecture is rewired under software control to optimize it for 
the processing task at hand. The RDPP is one of the very few 
processors designed specifically for reconfigurable comput-
ing. 

 
The RDPP contains 16 on-board processing elements, each 

equipped with a 24-bit multiplier, an arithmetic-logic unit 
(ALU), signal conditioning logic, and switching logic [1, 2]. 
Programmable interconnects enable the processing elements 
to be connected in a synchronous data flow pipleline.  Five 
24-bit input and output ports provide a data interface, and 10 
control signals synchronize the RDPP to external hardware. 
An on-board execution unit with 256 words of memory syn-
chronizes the firing of processing elements. A byte-oriented 
host interface connects the RDPP to a host processor, which 
can be a microcontroller or a remote processor connected 
over a digital bus. The RDPP project has also produced a 
suite of development software, including application devel-
opment tools and a functional simulator. 

 
Fig. 1 shows an RDPP processing pipeline. The processing 

elements (PEs) can perform arithmetic and logical operations, 
and also serve as run-time switches to join two data path 
segments. Each PE and IO module has a registered input with 
an independent fire signal, controlled by the on-board execu-
tion unit. In the figure, τ represents a processing delay. 
 

p
p

 

f
p
e
f

c
T
t
R

A

m
a
r
m
e
l

IOM1PE4
τ=2

PE0
τ=2

PE3
τ=3

PE2
τ=2

PE1
τ=4

IOM0

Input

Output

IOM1PE4
τ=2

PE0
τ=2

PE3
τ=3

PE2
τ=2

PE1
τ=4

IOM0

Input

Output

Figure 1: RDPP Processing Pipeline 
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Each RDPP chip contributes 16 processing elements to a 
rocessing pipeline. By tiling RDPP chips, we can construct a 
ipeline of arbitrary size. 
 
RDPP operation occurs in two phases: 

1. Configuration 
2. Execution 

In the configuration phase, a host processor sets up the 
unction of each module and establishes the topology of the 
ipeline. In execution, the on-board execution unit “fires” the 
xecutable modules, i.e., the PEs and IO ports. A module 
ires when new data are latched into its input. 
 

II. CHALLENGE PROBLEMS 

 
The RDPP is demonstrated on two challenge problems: Fo-

al Plane Array Sensor Readout Correction, and Fourier 
ransform Hyperspectral Imager Data conversion. These 

asks were demonstrated using RDPP standalone simulator, 
DPPSim. 
 

.  Focal Plane Array Readout Correction 
 
A solid-state focal plane imaging array (FPA) consists of a 
atrix of sensors. Each sensor has a photodetector, typically 

 photodiode; a charge storage mechanism; and a small cur-
ent-to-voltage conversion amplifier. An analog readout 
echanism such as a charge coupled device (CCD) pipeline 

nables the voltage at each pixel to be multiplexed to an ana-
og-to-digital converter (ADC). The imaging elements, or 



pixels, are not all uniform. Due to process variations, each 
pixel has a unique offset and a unique gain error. This results 
in so-called “fixed pattern noise” in an image. FPA readout 
correction consists of reading a pixel, multiplying by a gain 
correction factor, and subtracting an offset correction factor.  

III. PROCESSING ON THE RDPP 

 
We are challenged to formulate these two processing prob-

lems for execution on a reconfigurable processor.  
 

 A.          FPA Readout Correction on the RDPP 
In addition to nonuniformity, a pixel may be “hot” or 

“dead”. A pixel becomes hot when an ion, due to cosmic ra-
diation, is trapped in the photodiode and causes a constant 
current to flow, producing a bright spot in the image. A dead 
pixel is disabled due to an electronic fault. Hot and dead pix-
els are not responsive to changes in illumination. We can 
approximate a complete image by replacing each bad pixel 
with a spatial average of neighbors. 

 
Focal Plane Array readout correction demonstrates two im-

portant features of the RDPP: 1) reconfigurability to adapt to 
different phases of a problem, and 2) run-time conditional 
data path selection. Readout correction consists of two dis-
joint operations: 

1. For good pixels, multiply by a gain correction factor, 
and subtract and offset correction. 

 2. For bad pixels, replace the pixel with a spatial aver-
age of neighbors. 

B. Hyperspectral Imager Data Conversion  
First, we must acquire the correction  data, through calibra-

tion. This requires several configurations. Fig. 3 shows the 
hardware configuration. In addition to the RDPP, we need 
two read only memories (SRAMs) to hold gain and offset 
corrections, and a First-In, First-Out (FIFO) line buffer, to 
delay one line of the image. (Addressing logic for the 
SRAMs is not shown.) 

 
The purpose of Fourier Transform Hyperspectral Imager 

(FTHSI) data conversion is to convert the raw signal data 
from a FTHSI instrument into a spectral intensity signal. This 
requires appodizing the raw signal, and computing the magni-
tude Fourier transform of the signal. The data used in this 
example come from a Kestrel FTHSI instrument similar to 
one flown on the Air Force Mighty Sat I.2 satellite [3, 4].  

1) First configuration: acquire offset data. We close the ap-
erture to block all light, acquire an image, and store it in 
memory. This is the offset or dark current error, scaled by the 
corresponding gain error. 

 
Fig 2 shows a block diagram of the FTHSI instrument in a 

pushbroom arrangement. A cylindrical lens system images a 
stripe of the scene through a slit aperture, to a Sagnac inter-
ferometer. The split-beam interferometer produces interfero-
grams, optical images that contain the Fourier transform of 
the spectral intensity. An imaging array captures these inter-
ferograms, which are digitized. The data conversion block is 
a digital processor, which appodizes each interferogram to 
remove artifacts, then computes the magnitude of the Dis-
crete Fourier Transform (DFT). This produces the spectral 
intensity at a point in the image. 

 
2) Second configuration: acquire gain error and find bad 

pixels. We  present a known, constant gray scene, acquire and 
store an image. Ideally, this image will be uniformly gray. In 
fact, it will exhibit fixed pattern noise due to the offset and 
gain errors. From this, we can easily derive the gain error. 

We can now compare the two images to find pixels that 
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Figure 23: Fourier transform hyperspectral imager schematic 
diagram. 

1. Remove artifacts due to vignetting. 
2. Apply a Hamming window. 
3. Compute the magnitude DFT 
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Figure 32: hardware configuration for FPA readout correction. 
ve not changed. These are dead pixels; we label them by 
tting an unused high-order bit in the offset memory. 



 
3) Third configuration: compute the reciprocal gain func-

tion. Gain correction requires dividing each pixel by a gain 
correction factor, or equivalently, multiplying by the recipro-
cal. Division is a complex operation, however, and the RDPP 
does not have a hardware divider. However, we can configure 
the RDPP to form a pipeline for division. We read each gain 
factor from memory, pass it through this pipeline to compute 
the reciprocal, and write the reciprocal back into memory. 
During the execution phase, only multiplication is required. 

 
We use a well-known recursive division algorithm. For 

more details, see [5]. 
 
4) Fourth configuration: execution. We now have the cali-

bration data stored in two separate memories, consisting of: 
1. The offset values, tagged with a special code for 

“bad pixels” 
2. The reciprocal of the gain error. 

 
Now we can read and correct images. In our implementa-

tion, the RDPP executes the two types of correction – nonuni-
formity correction, and bad pixel replacement – simultane-
ously, and selects the correct value to output, depending on 
whether the pixel has been tagged as “bad”.  

 
The pipeline is shown in Fig. 4. OIP0 through IOP3 are in-

put-output ports, configured for input. DOP is a dedicated 
output module. After a latency of 9 cycles, we obtain a cor-
rected pixel on every instruction cycle. 

 
B. 

 
D

gra
cen
sim
no
be 
has

The information-bearing signal rides on an underlying curve, 
which is due to vignetting of the optical system, as are the 
spikes at the ends. We must clean up the signal and remove 
the mean. To achieve this, we pass the signal through a high 
pass filter. At the same time, we prepare the signal for the 
Discrete Fourier Transform, multiplying the signal point-by-
point by a Hamming window. A well-known method for re-
ducing windowing effects, the Hamming window is simply 
one half of a period of a cosine function fitted to the width of 
the curve. This is computed offline and stored in memory. 
Fig. 4 shows the signal after appodization and application of 
the Hamming window. 
 

Next, we compute the magnitude Fast Fourier Transform on 
the signal. This generates the magnitude spectrum of Fig 5. 
This signal has not been calibrated for wavelength or inten-
tisy, so the wavelength and spectral intensity axes are 
unitless. 
 

Computing the Discrete Fourier Transform (DFT) or Fast 
Fourier Transform (FFT) on the RDPP requires a different 
DOP

PEIOP3

Output

IOP0

IOP4

IOP0

Bad pixel 
replacement

data path 
selector

PE PE PE

PE

PE

PE

PE

PE

Raw Pixels

Gain

Offset

Nonuniformity 
Correction

DOP

PEIOP3

Output

IOP0

IOP4

IOP0

Bad pixel 
replacement

data path 
selector

PE PE PE

PE

PE

PE

PE

PE

Raw Pixels

Gain

Offset

Nonuniformity 
Correction

Figure 4: RDPP pipeline for pixel readout correction. 
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ata arrive from the FTHSI instrument as raw interfero-
ms, like the one shown in Fig. 5. The information is con-
trated in the “burst” at the center. The vertical units are 
ply analog-to-digital converter counts, as this signal has 

t been calibrated. The signal also has artifacts, which must 
removed through a process called appodization. The signal 
 been digitized to 12 bits from a focal plane imaging array. 
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Figure 6: Appodized interferograms. 
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Figure 5: raw interferogram. 



approach than the familiar Cooley-Tukey FFT algorithms. 
The Cooley-Tukey algorithm is optimized for a random-
access computers with a single multiplier.  It employs a di-
vide-and-conquer technique to significantly reduce the num-
ber of multiply operations. This requires frequent re-ordering 
of the data, however. In contrast, the RDPP is a multiplier-
rich computational platform, and is not random-access: it has 
no pool of randomly accessible memory. Data shuffling on 
the RDPP is not easy. Therefore, the optimal FFT algorithm 
for the RDPP is not the classical one, but is based instead on 
the Goertzel algorithm. This is developed in detail in [6].  

 
Fig. 7 shows a converted spectrum. The signal has not been 

spectrally calibrated, so the scales on the axes are meaning-
less. However, the form of the spectrum is sensible. The tar-
get is an optical flat, and the source is an incandescent lamp; 
the form of the spectrum is a Planck’s Law curve, which we 
expect. 
 

Figure 8 shows a possible hardware configuration for FHSI 
data conversion. The memory on the left holds the pre-
computed Hamming window coefficients, and the memory on 
the right holds the data being converted. In this example, I/O 
port IOP4 provides memory addresses to both memory chips, 
generated in RDPP software. 

 
One RDPP can compute eight magnitude Fourier coeffi-

cients simultaneously, with a single read through the data. 
The magnitude is computed directly – we don’t have to com-
pute the complex-valued DFT first, then take the magnitude 
of that. The significant data are contained in about 128 data 
points in the center of the interferogram signal. With the Go-
ertzel technique, we can compute only the coefficients we 
need, unlike block-oriented FFT algorithms, where we must 
compute the FFT on an entire sequence, and extract the use-
ful portion. We can convert 128 data points with a single 
RDPP chip in seven blocks of eight points each. This requires 

seven “reads” through the 128 data poinaddaddts. 
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Figure8: A hardware configuration for FTHSI data conversion.

IV. PERFORMANCE 

 
1) Readout correction. Our implementation of the Focal 

Plane Array pixel readout correction requires four configura-
tions: three to acquire and store calibration data, and one to 
correct images. The image correction phase has a latency of 9 
instruction cycles, and a through put of one processed pixel 
per instruction cycle. At an anticipated cycle rate of 60 MHz, 
this is 60 megagpixels per second. 

 
This implementation requires two random access memories 

and a FIFO line buffer. 
 
2) Hyperspectral Imager Data Conversion. Appodization 

can be performed on a single FTHSI interferograms in a sin-
gle pass through the RDPP. The Hamming window can be 
applied at the same time. The appodized and windowed im-
age (128 points) is stored in memory. 

 
Computing the magnitude inverse transform on the 128 

point sequence in one RDPP takes seven passes through the 
data. Between passes, the host must load new coefficients 
into 8 processing elements. Each pass though the data takes 
about 2.1 microseconds. Loading the 8 coefficients takes 
about 0.8 microseconds. Thus, converting the 128-point se-
quence with one RDPP chip requires  3.207)8.01.2( =×+  
microseconds. This requires one RDPP chip and at least one 
external memory; each memory holds only 128 points of data 
plus 128 points of Hamming window. 

 
Since Goertzel algorithm computes the Fourier coefficients 

independently, we can use multiple RDPP chips and compute 
the FFT on the entire sequence at once, with one read through 
the data, and no need to re-load coefficients, in about 2.1 mi-
croseconds. By combining appodization and FFT computa-
tion, a data rate of 2.8 megasamples per second is possible. 
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Figure 7: Converted spectral intensity signal. 



CONCLUSIONS 

 
We have demonstrated two challenge problems on the Re-

configurable Data Path Processor. Both are typical spacecraft 
instrument data processing problems. Both problems were 
demonstrated using the RDPP simulator, which produces 
results that are functionally equivalent to the chip itself. 
These demonstrations represent an important step in the vali-
dation of the RDPP architecture. 
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